

Breaking Bad: Detecting malicious domains using word segmentation

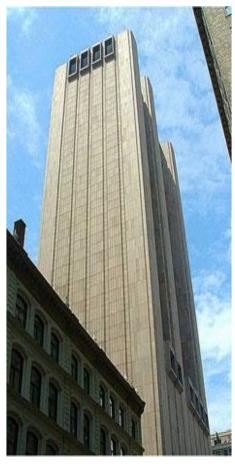
Wei Wang, Kenneth E. Shirley

AT&T Security Research Center, AT&T Labs Research

2015-05-21, WEB 2.0 Security & Privacy 2015

Who We Are

Our location: 33 Thomas Street, New York, NY



Wei Wang AT&T Security Research

Kenny Shirley AT&T Statistics Research

Our main question

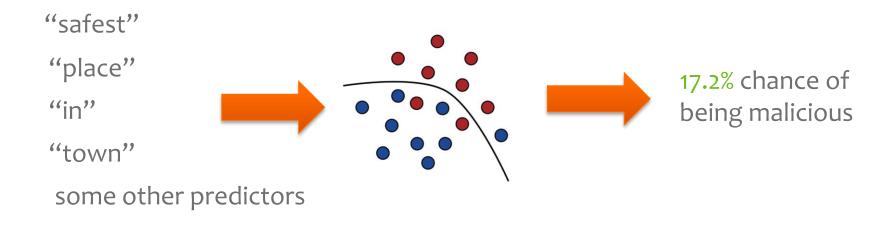
How well can we predict whether a website is malicious using only information from its domain name?

Explore the solution with

- (1) word segmentation and
- (2) machine learning

Toy example

Is it safe to visit the domain safestplaceintown.com?

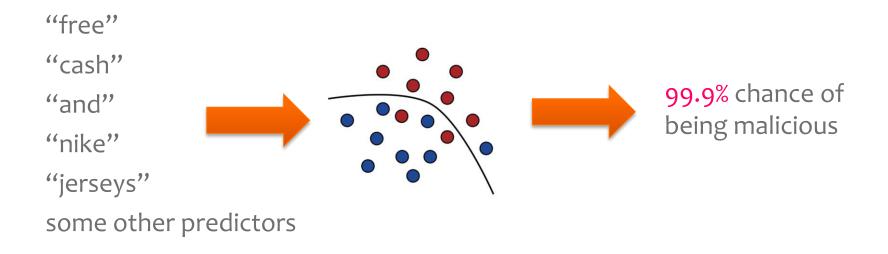


(1) word segmentation

- (2) machine learning
- (3) make prediction

Toy example

What about the domain <u>freecashandnikejerseys.com</u>?



(1) word segmentation

- (2) machine learning
- (3) make prediction

Outline

Background

Data and Experimental Setup

- Data (Domains + Outcome Variable)
- Experiments
- Features

Results

Conclusions

Problem: Malicious Domains

What are malicious domains used for?

- 1. Malware binary download site
- 2. Phishing/scam site
- 3. Botnet command-and-control (C&C)
- 4. Data exfiltration site
- 5. Site for obfuscation to avoid detection

Previous Machine Learning Approaches (1)

Features based on the content of webpages

- Download the page and analyze/characterize its content
- Highly accurate, but potentially slow

Previous Machine Learning Approaches (2)

Features based on domain names, URLs, hosts:

Lexical characteristics

- length of domain name, number of digits, etc.
- keywords (i.e. manually curated list of brand names)
- Markov models for character-to-character transitions

DNS and host-based features

of distinct IP addresses and other DNS and WHOIS information

Previous Machine Learning Approaches (3)

Large-scale machine learning on full URLs [Ma et al 2009 (KDD and ICML), 2011] Most Relevant Work

- Combine lexical characteristics of full URL (including bag-of-words model on URL path) with host-based features (from DNS and WHOIS queries)
- High accuracy, but real-time implementation requires 3-4 seconds per URL

Our idea...

Q: Can we extract any more features without sacrificing speed?

A: Word segmentation of the domain name

Thousands of new features: word segmentation

Word segmentation = break a string into one or more substrings

- Recent applications to domain names, Twitter hashtags, etc.
- Methodological research with the goal of recovering a true, known segmentation of a domain name [Wang '11, Srinivasan '12]
- [Norvig '09] a book chapter that included an introduction to word segmentation using language models (and code!)

Our Approach: A combination of two methods

Word Segmentation on domain names (not full URLs)

+

Machine learning

Outline

Background

Data and Experimental Setup

- Data (Domains + Outcome Variable)
- Experiments
- Features

Results

Conclusions

Review: Definition of a domain name

Full URL http://www.more.example.com/path-to-url.html

Top level domain http://www.more.example.com/path-to-url.html

Second-level domain http://www.more.example.com/path-to-url.html

Domain name may only consist of:

- Alphanumeric characters
- Hyphens
- Top-level-domain (TLD)

Data – Two Sources

- 1. A sample of domains visited on a cellular network
 - ~ 1.3 million unique domain names from Sept. 2014
- 1. Domains from DMOZ, the Open Directory Project
 - 30,000 randomly sampled domain names from Nov. 2014

How to define "malicious": Web of Trust

What: Web of Trust (WOT), at www.mywot.com

- crowd-sourced website reputation and review service
- The ratings are validated with trusted third party information

Each domain has:

rating	confidence score	category
[0,100]	[0,100]	"trustworthiness" "child safety"

~261,000 out of 1,372,120 (20%) cellular domains had non-empty WOT scores

Three experiments

"Balanced Data"

- Why: to compare to Ma'09 and other studies that used DMOZ data.
- Malicious = 1 if rating < 60
- All DMOZ are benign.

	DMOZ	Cellular	Row total
Training	15,000 (benign)	15,000 (malicious)	30,000
Testing	15,000 (benign)	15,000 (malicious)	30,000

Three experiments

2. "Unfiltered Cellular"

- Use all cellular data
- Malicious = 1 if rating < 60
- Baseline rate ~ 14.6% malicious

	Cellular
Training	80%
Testing	20%
Column total	100% (~261,000)

Three experiments

3. "Filtered Cellular"

- Attempt to use only high-quality cellular data
- Remove those with rating in [40, 59] or confidence < 10
- Malicious = 1 if rating < 40
- Baseline rate ~ 24.5% malicious

	Cellular
Training	80%
Testing	20%
Column total	100% (~80,000)

Feature sets

1. "Basic" (22 features)

number of characters; number of hyphens; number of digits;
 number of numbers

(discretized to allow for non-linear relationships)

"4downs-10yards.com"

→ 14 characters, 3 digits, 1 hyphen, and 2 numbers

- 2. "Character indicators" (36 features)
- Indicator(a-z, o-9)

Feature sets

- 3. "Character Markov model log-likelihood" (22 features)
- top 1/3 million unigrams from the Google Ngrams corpus to train a 1st order Markov model
- transition probability between characters (11 bins)
- 4. "Top level domains (TLDs)" (~400 features)
- 5. "Words" (~94,000 features) * this is our innovation

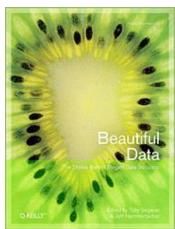
Word segmentation

```
"duckduckgo.com" → {"duck", "duck", "go"} (3 tokens)
→ {"duck", "go"} (2 words)
```

Dynamic programming algorithm [Norvig'09, Beautiful Data]

Find the most likely segmentation of a string of characters into a set of one or more tokens based on Google bigrams corpus

2.34 tokens/domain on average



The most frequent words

	Word	Freq		Word	Freq		Word	Freq
1	a	6772	11	on	1638	21	shop	1168
2	the	6186	12	my	1593	22	world	1157
3	i	3515	13	is	1426	23	music	1143
4	of	3183	14	club	1393	24	city	1078
5	S	2789	15	web	1380	25	it	1056
6	in	2630	16	art	1297	26	center	1047
7	online	2554	17	inc	1234	27	news	1034
8	and	2495	18	co	1187	28	st	1032
9	e	1847	19	for	1181	29	free	1017
10	to	1772	20	de	1171	30	group	1012

30 most frequent words: some stop words, some common "web" words

Total Vocabulary Size: 94,050 words

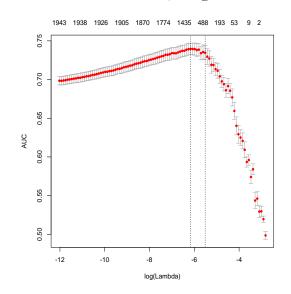
Model: lasso-regularized logistic regression

Model: logistic regression with lasso penalty (binary classification)
R package glmnet

[Ma'09 found that this was roughly as accurate as SVM and Naïve Bayes]

Training: 10-fold cross-validation

Sparse coefficients (many zeroes)



Features are of the same scale \rightarrow the coefficients are interpretable

Outline

Background

Data and Experimental Setup

- Data (Domains + Outcome Variable)
- Experiments
- Features

Results

Conclusions

Results

		Feature Sets	MCR	AUC	# Features	$\# \neq 0$
	M1	Basics				-
Individual	M2	Characters				
set	M3	TLD				
500	M4	Log-likelihood				
L	M5	Words				
focus of	M6	M1 + M2 + M3 + M4				
this study!	M7	M6 + Words				

MCR results are based on a naive threshold of 0.5

Summary of model fits to "Balanced Data" (Experiment 1)

	Feature Sets	MCR	AUC	# Features	$\# \neq 0$
M1	Basics	0.435	0.595	22	6
M2	Characters	0.478	0.536	36	29
M3	TLD	0.288	0.763	489	101
M4	Log-likelihood	0.492	0.512	22	13
M5	Words	0.373	0.667	24772	4588
M6	M1 + M2 + M3 + M4	0.297	0.771	569	104
M7	M6 + Words	0.277	0.813	25341	2928

- M7 decreases the MCR of M6 by 2% and increases the AUC by about 4%
- M7 has slightly fewer than 3000 active (nonzero) features

Summary of model fits to "Unfiltered Cellular" data (Experiment 2)

	Features	MCR	AUC	# Features	$\# \neq 0$
M1	Basics	0.146	0.563	22	13
M2	Characters	0.145	0.576	36	27
M3	TLD	0.140	0.657	479	99
M4	Log-likelihood	0.146	0.542	22	18
M5	Words	0.137	0.708	77866	12568
M6	M1 + M2 + M3 + M4	0.137	0.696	559	158
M7	M6 + Words	0.125	0.779	78425	9938

- Improvement in MCR is smaller than the "balanced"
- M7 is substantially better than M6 in AUC (about 8% higher)

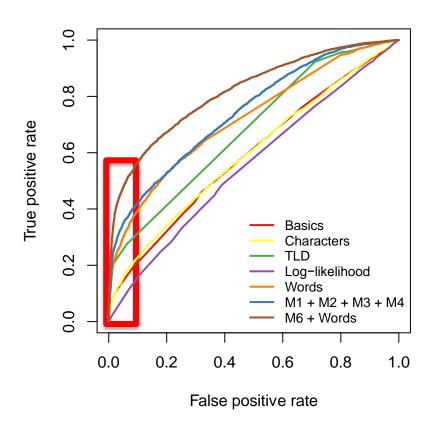
Summary of model fits to "Filtered Cellular" data (Experiment 3)

	Features	MCR	AUC	# Features	$\# \neq 0$
M1	Basics	0.240	0.593	22	11
M2	Characters	0.242	0.597	36	23
M3	TLD	0.211	0.681	323	33
M4	Log-likelihood	0.250	0.557	22	9
M5	Words	0.212	0.720	38025	8578
M6	M1 + M2 + M3 + M4	0.199	0.744	403	119
M7	M6 + Words	0.167	0.817	38428	5416

- Similar results to those in the "unfiltered cellular"
- MCR rates decrease faster, and the AUC is 4% higher than M7 in the "unfiltered cellular"

Results – ROC Curves

Full ROC Curves (Filtered Cellular)



Words associated with malicious domains

- 1) Brand names: rayban, oakley, nike, vuitton, hollister, timberland, tiffany, ugg
- 2) Shopping: dresses, outlet, sale, dress, offer, jackets, watches, deals
- 3) Finance: loan, fee, cash, payday, cheap
- 4) Sportswear: jerseys, kicks, cleats, shoes, sneaker
- 5) Basketball Player Names (associated with shoes): kobe, jordan, jordans, lebron
- 6) Medical/Pharmacy: medic, pills, meds, pill, pharmacy
- 7) Adult: webcams, cams, lover, sex, porno
- 8) URL spoof: com

Words associated with benign domains

- 1) Locations: european, texas, india, europe, vermont, zealand, washington, colorado
- 2) Hospitality Industry: inn, ranch, motel, country
- 3) Common Benign Numbers: 2000, 411, 911, 2020, 365, 123, 360
- 4) Realty: realty, builders, homes, properties, estate
- 5) Small Businesses: rentals, outfitters, lumber, audio, funeral, flower, taxidermy, inc, golf, law, farm, chamber, farms, rider, photo
- 6) Geographical Features: creek, hills, lake, ridge, river, valley, springs, grove, mountain, sky, island

Outline

Background

Data and Experimental Setup

- Data (Domains + Outcome Variable)
- Experiments
- Features

Results

Conclusions

Conclusion

- Word segmentation added substantial predictive power to a logistic regression model
- 2. Models are interpretable
- 3. Highly predictive words may change over time
- 4. Potential complementary method to more accurate, but expensive and time-consuming approaches

Future work

- 1. Use different source(s) for the outcome variable
- 2. Long term evaluation of the system
- 3. Online learning with streaming data

Q & A

